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ABSTRACT 17 
Salt marsh vegetation tends to increase vertical uncertainty in light detection and ranging 18 

(lidar) derived elevation data, often causing the data to become ineffective for analysis of 19 

topographic features governing tidal inundation or vegetation zonation.  Previous attempts at 20 

improving lidar data collected in salt marsh environments range from simply computing and 21 

subtracting the global elevation bias to more complex methods such as computing vegetation-22 

specific, constant correction factors. The vegetation specific corrections can be used along with 23 

an existing habitat map to apply separate corrections to different areas within a study site.  It is 24 

hypothesized here that correcting salt marsh lidar data by applying location-specific, point-by-25 

point corrections, which are computed from lidar waveform-derived features, tidal-datum based 26 

elevation, distance from shoreline and other lidar digital elevation model based variables, using 27 

nonparametric regression will produce better results.  The methods were developed and tested 28 

using full-waveform lidar and ground truth for three marshes in Cape Cod, Massachusetts, 29 

U.S.A. Five different model algorithms for nonparametric regression were evaluated, with 30 

TreeNet’s stochastic gradient boosting algorithm consistently producing better regression and 31 

classification results.  Additionally, models were constructed to predict the vegetative zone (high 32 

marsh and low marsh). The predictive modeling methods used in this study estimated ground 33 

elevation with a mean bias of 0.00 m and a standard deviation of 0.07 m (0.07 m root mean 34 

square error). These methods appear very promising for correction of salt marsh lidar data and, 35 

importantly, do not require an existing habitat map, biomass measurements, or image based 36 

remote sensing data such as multi/hyperspectral imagery. 37 
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1. Introduction 1 

Salt marshes are saline wetlands dominated by grasses and other plants adapted to periodic 2 

flooding, usually as a result of tidal forcing (Mitsch and Gosselink, 2000).  Salt marshes are 3 

found throughout middle to high latitudes and exhibit characteristic patterns of vegetation 4 

zonation that are often based on an elevation gradient (Morris et al., 2005; Zedler et al., 1999).  5 

Salt marshes provide valuable ecosystem functions, such as critical wildlife and biodiversity 6 

support, water quality improvement, and coastal storm protection (Costanza et al., 1997; Mitsch 7 

and Gosselink, 2000).  Geomorphically, salt marshes are often separated from adjacent tidal flats 8 

by a ramp or abrupt change in elevation caused by increased sedimentation, peat development 9 

and decreased erosion due to vegetation (Crooks et al., 2002; Fagherazzi et al., 2006).  These 10 

low-lying landforms are poised systems, balancing accretion and storage with erosion and 11 

oxidation of sediments in response to tidal flooding (Roman and Burdick, 2012) and, therefore, 12 

are sensitive to increases in water levels resulting from sea-level rise (SLR).  In general, very 13 

small variations in elevation, which affect inundation, available sediment, nutrients and salinity, 14 

determine whether salt marsh species thrive, survive or fail (Morris et al., 2002).  Therefore, SLR 15 

is a major cause of concern for coastal scientists and managers.   16 

Accurately determining salt marsh elevation is fundamental to understanding almost every 17 

aspect of marsh system science and management, including response to SLR and storm surge 18 

inundation, in terms of adaptation and resiliency.  However, obtaining high-resolution, high-19 

accuracy digital elevation models (DEMs) of salt marshes can be difficult, costly, and time 20 

consuming using traditional data collection methods.  The importance of lidar (light detection 21 

and ranging) for conducting rapid surveys of salt marshes has been recognized (Brock and 22 

Sallenger, 2001), and the technology is often proposed as a substitute for field-based data sets 23 
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collected by either differential leveling or RTK GNSS (Real-Time Kinematic Global Navigation 1 

Satellite System) surveys (Montane and Torres, 2006; Schmid et al., 2011).  Further, the ability 2 

to map major plant communities using remote sensing, which always appears out of reach with 3 

each new technological breakthrough, would be of great value to salt marsh ecologists and 4 

managers. 5 

An inherent problem with the use of lidar in salt marshes is the vegetation typically increases 6 

the vertical uncertainty.  That uncertainty can be quantified empirically as the root mean square 7 

error (RMSE), obtained by comparison against RTK GNSS, as follows: 8 

���� = ��
�∑ (�� − ��,�)�����      (1) 9 

where Zi is the ith lidar-derived elevation and Zi,c is the corresponding ground control elevation. 10 

The RMSE can also be decomposed into the bias, μ (the mean difference between what the lidar 11 

determines to be bare earth elevation and ground control) and standard deviation of elevation 12 

differences about the mean, σ.  For large sample sizes, N, the following relation is expected to 13 

hold (Stewart et al., 2009): 14 

����� ≈ �� + ��      (2) 15 

For lidar to serve as a viable technology in salt marsh research and planning, the observed 16 

uncertainty in elevation needs to be less (preferably much less) than the elevation ranges of 17 

ecological importance (Sadro et al., 2007).  For instance, if the uncertainty due to vegetative 18 

impacts on the determination of elevation from the lidar signal is greater than the elevation range 19 

determining species dominance and habitat, then lidar is not useful for restoration planning, 20 

hydrologic modeling, and SLR studies. These uncertainties can be seasonally driven depending 21 

on marsh location or region, since many marsh systems cycle between senescence and peak 22 

growth conditions.  Quantifying uncertainties of salt marsh lidar data and applying corrections to 23 



P3-Waveform Lidar Correction_ECSS submittal_revision_v4_20171120_tables 

4 

 

produce accurate DEMs has, to date, been only partially resolved.  In general, uncorrected lidar 1 

datasets from salt marshes lack sufficient accuracy for use in the tasks mentioned above (Hladik 2 

and Alber, 2012; Rosso et al., 2006; Schmid et al., 2011).  However, research to determine the 3 

extent to which lidar penetrates the salt marsh canopy and methods to correct for vegetation-4 

induced elevation uncertainty have begun to achieve results (Buffington et al., 2016; Gopfert and 5 

Heipke, 2006; Hladik and Alber, 2012; Hladik et al., 2013; Medeiros et al., 2015; Populus et al., 6 

2001; Rogers et al., 2016; Rosso et al., 2006; Schmid et al., 2011).   7 

 8 

1.1 Previous Research  9 

Prior attempts at developing correction techniques for vegetation-induced lidar uncertainty 10 

have involved: 1) subtracting off a global (i.e., computed for the entire data set) elevation bias; 2) 11 

filtering/interpolation/classification methods (Schmid et al., 2011); 3) reduction based on canopy 12 

height, density , or above ground biomass coverage (Medeiros et al., 2015; Wang et al., 2009); 4) 13 

subtraction of species-specific bias based on vegetation cover maps (Hladik and Alber, 2012; 14 

Hladik et al., 2013); and 5) use of Normalized Difference Vegetation Index (NDVI) (Buffington 15 

et al., 2016).  Due to the spatial variation in elevation uncertainty across a marsh (Parrish et al., 16 

2014), subtracting a global bias tends to overcorrect the elevation error in some places and under 17 

correct in others.  Filtering and interpolation correction methods are greatly hindered by the 18 

dearth of true ground returns from the low, dense growing salt marsh vegetation and the potential 19 

inaccuracies introduced by uncertainty in the separation of ground and vegetation returns 20 

(Rogers et al., 2016; Sadro et al., 2007; Schmid et al., 2011; Wang et al., 2009).  While 21 

relationships between vegetation canopy height, percent coverage and lidar uncertainty have 22 
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been observed (Gopfert and Heipke, 2006; Populus et al., 2001; Schmid et al., 2011), these 1 

methods  often fail to produce the desired level of elevation correction in a salt marsh.   2 

Advancements in salt marsh DEM correction methods have been made by conducting 3 

species-specific elevation correction (Hladik and Alber, 2012; Hladik et al., 2013; McClure et 4 

al., 2016; Sadro et al., 2007).  Since the error is primarily attributable to vegetation and tends to 5 

be species-dependent, this method vastly improved DEM accuracy by focusing the appropriate 6 

amount of correction where it is needed.  Unfortunately, a requirement of vegetation-based 7 

correction techniques is a priori knowledge of species distribution.  From past project 8 

experience, existing vegetation maps are typically unavailable, too outdated, too coarse, or too 9 

inaccurate for many project sites.  If a project requires collecting this information, it would also 10 

necessitate additional fieldwork or multi/hyperspectral sensor data that adds to cost, time and 11 

introduced errors.  However, even if vegetation data were available and accurate, salt marsh 12 

species often present ranges of elevation uncertainty that fall in a continuous distribution rather 13 

than a constant (Rogers et al., 2016).  Lidar uncertainty in salt marsh environments is influenced 14 

by vegetation height, stem density, biomass, and species growth habit (Buffington et al., 2016; 15 

Hladik and Alber, 2012; Rogers et al., 2015; Schmid et al., 2011).  These vegetation 16 

characteristics vary over the marsh surface as a function of edaphic conditions (nutrients, 17 

salinity, sulfide concentrations, lower redox potential) and time of year, as well as other factors 18 

(Bertness and Ellison, 1987; Byrd and Kelly, 2006; Mendelssohn et al., 1981; Mitsch and 19 

Gosselink, 2000).  For example, medium-form Spartina alterniflora has a height range of 50 - 20 

100 cm, and one would expect the observed lidar uncertainty to have a range as well.  It seems 21 

unlikely that each vegetation species/ecophene region would require a constant DEM correction 22 

factor across its entire extent (Hladik and Alber, 2012; Hladik et al., 2013). 23 
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 1 

1.2 Full-waveform and Nonparametric Modeling Approach 2 

An alternate method to the problem of salt marsh lidar elevation correction involves the use 3 

of full-waveform lidar systems.  Full-waveform equipment records a time series of backscattered 4 

energy with a digitizer and a high-capacity storage device.  The amplitude of the laser return is 5 

dependent on the power of the transmitted pulse, the range, the surface-intercepted fraction of the 6 

pulse, the surface reflectance, the incidence angle, and the fraction of the pulse returned toward 7 

the sensor (Lefsky et al., 2002).  As a result only a small fraction of the transmitted energy from 8 

the initial pulse returns to the sensor from the ground target (Wagner et al., 2008).  Ground 9 

targets, such as vegetation, soil and other objects tend to have a rough surface at the near infrared 10 

(NIR) wavelengths commonly used in topographic lidar and generally scatter lidar energy 11 

diffusely, at least as a first-order approximation.  Water is often observed as a data void since 12 

most of the energy is absorbed or undergoes specular reflection in a direction away from the 13 

sensor, although some strong, specular returns from near-nadir beams (i.e., directly below the 14 

aircraft) are often observed.   15 

Full-waveform digitizing systems reveal the vertical distribution of the targets for the nadir 16 

beams and resolve surfaces closer together in the range direction than discrete-return lidar (DRL) 17 

systems  (Anderson et al., 2008; Drake et al., 2002; Lefsky et al., 2002; Parrish et al., 2011).  18 

Data processing techniques for full-waveform lidar usually involve computationally-complex 19 

decomposition or deconvolution (Jutzi and Stilla, 2006) of the returned backscatter into relevant 20 

peaks to generate denser point clouds then would be available from DRL (Mallet and Bretar, 21 

2009; Wagner et al., 2008).  Studies utilizing simple, feature-based waveform metrics have 22 
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started to demonstrate utility in the waveform data beyond these resource intensive approaches 1 

(Adams et al., 2012; Muss et al., 2013; Parrish et al., 2014; Rogers et al., 2015, 2016).   2 

In a previous study by the authors, it was observed that distributions of vegetation height 3 

display unique, species-based characteristics (Figure 1) (Rogers et al., 2016).  While this 4 

relationship appeared to be particularly true with S. alterniflora and Salicornia spp., S. patens 5 

and D. spicata maintained very similar growth characteristics and range of elevation dominance.  6 

In New England salt marshes, a known association between elevation and vegetation height 7 

exists, such that as marsh elevation decreases the vegetation height increases (Figure 2).  It has 8 

also been determined that individual marsh species exhibit varying ranges of elevation 9 

uncertainty unique to their growth and form (Hladik et al., 2013; Rogers et al., 2016; Schmid et 10 

al., 2011).  Therefore, the ability to discriminate between species using these and other 11 

observable characteristics and relationships might play a role in determining a lidar elevation 12 

correction strategy.  Furthermore, a relationship between metrics derived from lidar waveform 13 

features (in particular waveform width’s association with elevation uncertainty and vegetation 14 

height) (Parrish et al., 2014; Rogers et al., 2015, 2016), suggested that a non-parametric 15 

modeling approach might lead to a successful correction technique.      16 

Problems with numerous independent variables and complex, possibly nonlinear 17 

relationships lend themselves to the use of machine learning and nonparametric modeling 18 

techniques.  Unlike typical statistical analysis of dependent and independent variables that utilize 19 

single or multiple regression techniques to make predictions of variable outcome, nonparametric 20 

modeling does not necessitate any hypothesis concerning variable distribution as a prerequisite to 21 

analysis  (Bourennane et al., 2014).  Nonlinear approaches are often required in environmental 22 
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modeling problems due to the complex and often concealed relationships between predictor 1 

variables (Tayyebi and Pijanowski, 2014).   2 

The research presented here investigates the following: 1) the potential correction of 3 

vegetation-induced elevation error using full-waveform lidar feature-based metrics such as 4 

waveform width and amplitude, as well as salt marsh surface characteristics such as slope and 5 

rugosity derived from the DRL, as inputs into a battery of nonparametric modeling algorithms; 6 

2) the use of nonparametric modeling and DRL-derived salt marsh surface characteristics (i.e. no 7 

full-waveform inputs included) to reduce vegetation-induced error; and 3) creation of a 8 

vegetative zone maps using the same modeling parameters and a training set of known 9 

vegetation species locations.  The ultimate goal of this work is to enable generation of models 10 

that can correct salt marsh lidar-derived DEMs to a level suitable for ecological and SLR 11 

applications.  Also, it may be possible to derive vegetative classification maps from lidar data 12 

(with limited ground truth efforts) that could assist researchers with locating habitat, research 13 

planning, or vegetation modeling.   14 

   15 

2. Methods 16 

The study sites are comprised of three individual, mesotidal salt marshes located on protected 17 

shorelines of Cape Cod, Massachusetts (Moors marsh: ~2.0 km2; Pamet River marsh: ~2.0 km2; 18 

and Great Island Middle marsh; ~0.3 km2) (Figure 3).  The study area is characterized by 19 

semidiurnal tides with a mean range of ~2.83 m (NOAA, 2013) .  The marshes were selected 20 

based on the following criteria:  1) they are physically close to one another, but hydrologically 21 

separate, 2) they contain large stands of the major marsh species present in northeastern United 22 
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States, and 3) they are easily accessible enabling collection of field data within a narrow time 1 

window.  2 

 3 

2.1 Vegetative Community 4 

Low marsh environments dominated by Spartina alterniflora (smooth cordgrass) are most 5 

commonly found in the studied marshes. However, small topographic highs (typically isolated) 6 

and small borders of high marsh located in the landward portions of the marshes are dominated 7 

by S. patens (salt marsh hay), D. spicata (spike grass) and Salicornia spp. (glasswort) (Portnoy et 8 

al., 2003) (Figure 4).  Salt marsh vegetation demonstrates zonation driven by small elevation 9 

changes and edaphic conditions (Bertness and Ellison, 1987).  Varying plant morphologies and 10 

growth habits have evolved by each vegetation species to adapt to the harsh conditions found in 11 

tidal marshes.  The vegetation occurs as homogeneous, near monoculture stands for the three 12 

major species and one genus (Spartina alterniflora, Spartina patens, Distichlis spicata, and 13 

Salicornia spp.).  Within each vegetative community there is variability in growth habit and 14 

height.  For example, Spartina alterniflora at these sites has three distinct variations or 15 

ecophenes caused by edaphic factors, often reported as short form (0-50 cm; SF), medium form 16 

(50-100 cm; MF), and tall form (>100 cm; TF) (Anderson and Treshow, 1980; Hladik and Alber, 17 

2012; Ornes and Kaplan, 1989; Pennings and Bertness, 2001; Reimold et al., 1973; Wiegert and 18 

Freeman, 1990).  Tall-form S. alterniflora ranges up to 2 m in height and is typically found at 19 

lower elevations and along estuarine creeks.  In contrast, SF S. alterniflora is commonly found in 20 

high marsh depressions with higher salinity, greater sulfide concentrations and/or lower redox 21 

potential (Mitsch and Gosselink, 2000).   22 

 23 
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2.2 Lidar Data Collection 1 

Approximately 37 km2 of lidar data was collected by The National Center for Airborne Laser 2 

Mapping (NCALM) on July 20th, 2010 centered on the daily predicted low tide (± 90 minutes) 3 

during peak biomass.  An Optech Gemini Airborne Laser Terrain Mapper (ALTM) and an 4 

Optech 8-bit IWD intelligent waveform digitizer (serial number 08DIG017) were mounted in a 5 

twin-engine Cessna 337 Skymaster.  Data were collected at a pulse repetition rate of 70 kHz and 6 

a flight speed of 60 m/s and altitude of 600 m (Table 1).  DRL was collected concurrently using 7 

the Optech hardware-based constant fraction discriminator and time interval meter.  Waveform 8 

data were sampled at 1 ns intervals and delivered in Optech’s NDF (digitizer file) binary format 9 

with an IDX index file and CSD (corrected sensor data) file.   10 

The salt marshes studied were comprised of low-growing marsh vegetation, “bare earth” and 11 

water features and did not include trees, buildings, or other structures such that the dataset was 12 

almost entirely composed of single return pulses (Rogers et al., 2015).  It is important to note that 13 

the lidar system used in this study had a long transmit pulse width of ~12 ns [full-width at half-14 

maximum (FWHM)] at 70 kHz PRF, corresponding to ~1.8 m of range. Salt marsh vegetation 15 

with heights significantly less than the range-equivalent transmit pulse width typically show 16 

return waveforms that contain just a single peak (Parrish et al., 2014; Rogers et al., 2015).   17 

Elevations delivered in NAVD88 were converted to a local tidal datum, mean high water 18 

(MHW), using NOAA’s Vertical Datum Transformation (VDatum) version 3.2 (Yang et al., 19 

2013) for consistency with NOAA shoreline definitions.  Conversions performed in VDatum do 20 

introduce some additional uncertainty in vertical coordinates (Cooper et al., 2013).  For the Gulf 21 

of Maine VDatum region, the NAVD88-MHW transformation uncertainty is reported by NOAA 22 

to be 11 cm (1-σ) (NOAA, 2017b).  However, due to the small spatial extents of our project sites, 23 
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the NAVD88-MHW separation is very nearly constant throughout the sites, and, therefore, the 1 

vertical datum transformation uncertainty can be treated as systematic uncertainty (i.e., 2 

removable, through a simple global bias correction), in contrast to the more complex, spatially-3 

varying elevation uncertainties considered elsewhere in this paper.   4 

 5 

 2.3 Field Data Collection 6 

To characterize the salt marsh environment, ~2,800 ground control points (GCPs) were 7 

established in various zones including tidal sandflats, low marsh, and high marsh.  GCPs were 8 

collected along quasi-randomly oriented and spaced transect lines using 30-sec RTK GNSS 9 

occupation times.  In this case, quantity of training and test data for the model generation 10 

outweighed the need for a small number of truly random sample stations.  Hard surfaces such as 11 

roads and parking lots in close proximity to the marshes were also surveyed to analyze for the 12 

overall lidar dataset accuracy (Rogers et al., 2016).  Marsh surface elevations and hard target 13 

GCPs were collected with a Trimble NetR5 base station network with cellular-based correction 14 

and a Trimble R8 Model 3 RTK GNSS rover.  Due to the conditions found in salt marsh 15 

environments, special care was needed when using the rover to ensure vertical accuracy (Torres 16 

and Styles, 2007).  A GNSS survey rod was modified with a 12 cm diameter flat base to keep the 17 

rod from depressing into the unconsolidated mud and peat.  Transects were taken through the 18 

marsh to record ground elevations, with an average point spacing of 5-7 m.  The GNSS 19 

equipment provided an RMSE of < 1 cm in the horizontal and 2 cm in the vertical (based on 20 

comparisons against geodetic control within the survey site), with elevations referenced to 21 

NAVD88 using GEOID09 (the latest NGS geoid model available at the time).  At each location 22 
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surface conditions were recorded such as the presence of sand, mud or dominant vegetation 1 

species and canopy height for later use in the model.   2 

 3 

2.4 Model Predictor Variables 4 

A custom process was developed with ArcGIS10, QCoherent LP360 and MATLAB to 5 

extract lidar waveforms from the provided data files and compute waveform shape-related 6 

metrics.  This research leverages previous work on waveform shape metrics by the authors 7 

(Parrish et al., 2014; Rogers et al., 2015, 2016).  The effects of variable lidar incidence angle on 8 

the waveform metrics, were tested in a previous study (Parrish et al., 2014) and found that, with 9 

the low flying height (600 m), narrow beam divergence (0.25 mrad), relatively flat terrain of salt 10 

marshes, and relatively small scan angles (±21°) used in the Cape Cod data acquisition, the 11 

effects are negligible.  This finding is consistent with that of Bretar et al. (2009).  Each lidar 12 

point within a subset of the studied marshes had a number of waveform features calculated, 13 

including lidar echo width, mean, area under the curve (AUC), skewness, and peak amplitude 14 

(Table 2).  Each of the feature metrics was exported as an individual ASCII file and gridded in 15 

ArcGIS Spatial Analyst using an inverse distance weighting (IDW) with a 1 m cell size.   16 

The DRL dataset used to produce predictor variables for the model included uncorrected lidar 17 

elevations and other surface measures such as rugosity and slope (Table 2).  Lidar point clouds 18 

in the LAS file format were preprocessed using QPS Fledermaus PFM 3D v7.43.  Lidar data 19 

evaluation and cleaning were performed using the PFM 3D point cloud editor to remove artifacts 20 

as well as erroneous or non-natural points that could influence the gridding results.  Elevations 21 

were converted to MHW in VDatum v. 3.2 and gridded using an IDW interpolation method with 22 

a cell size of 1 m and a search radius of 1  (Rogers et al., 2016).  IDW uses a weighted average of 23 
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the n nearest elevation points, where the weights are inversely proportional to distance from the 1 

cell being analyzed (Ries, 1993).  Comparison studies between interpolation methods suggest 2 

that results between various methods (inverse distance weighting; ordinary kriging; universal 3 

kriging; multiquadratic radial basis function; and regularized spline with tension) are not 4 

appreciably different if the sampling density is high, but under low sampling density kriging 5 

techniques are preferable (Chaplot et al., 2006).  Since this study acquired lidar with 6 

approximately 5 pts/m2 point density (return density), the IDW interpolation method was chosen 7 

as the preferred method due to its fast processing speed.  In addition, using a search radius of 1 8 

restricted the final cell elevation to be based only on returns from that cell.  Landscape metrics 9 

derived from the lidar DEM such as surface slope (the rate of change in value from each cell to 10 

its neighbors (Burrough and McDonell, 1998)), and three measures of curvature (fourth-order 11 

polynomials of a surface on a cell-by-cell basis (curvature, profile curvature and planimetric 12 

curvature (Zevenbergen and Thorne, 1987)), were calculated with ArcGIS v10.  Rugosity, which 13 

is a measure of surface roughness (Sappington et al., 2007), was calculated using Benthic Terrain 14 

Modeler for ArcGIS10 (NOAA, 2017a) using the gridded DRL elevation.  15 

  It was critical that the elevation data used in this research be referenced to a local tidal 16 

datum such as MHW as opposed to NAVD88 orthometric heights or NAD83 ellipsoid heights 17 

because salt marsh vegetation speciation is tidally driven.  A relationship has been established 18 

between tidal datum elevations (i.e. Mean High Water [MHW]) and the frequency of salt marsh 19 

species occurrence (Lefor et al., 1987; Mckee and Patrick, 1988; Morris et al., 2005).  Therefore 20 

a tidal datum is the best possible method to analyze difference in topographic height and 21 

speciation that will assist with model pattern recognition.  Another reason the MHW datum was 22 
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chosen was to be consistent with the NOAA Continually Updated Shoreline Product (CUSP) 1 

(NOAA, 2016).   2 

Distance from the shoreline was the only model input variable not taken directly from the 3 

lidar metrics but was a derivative product from the lidar. The distance from the shoreline has a 4 

direct influence on inundation frequency and edaphic conditions and, therefore, vegetation 5 

speciation (Andrew and Ustin, 2009; Griffin et al., 2011; Hladik and Alber, 2014; Sanderson et 6 

al., 2001).  The -1.0 m MHW shoreline (i.e., the -1.0 m elevation contour, relative to MHW) was 7 

extracted from the lidar following procedures used by NOAA NGS (Graham et al., 2003; White 8 

et al., 2011).  For this study, the -1.0 m MHW contour line closely followed the lowest most 9 

extent of vegetation.  Also referenced was a 2009 3-band (RGB) MassGIS high resolution (0.3 m 10 

pixel) orthophoto captured one year prior to the lidar survey.  The final shoreline was an 11 

interpretation of the extracted shoreline and the orthophotography and in this case represents -1.0 12 

m or the lowest extent of vegetation.  This orthophoto was also used in the photo interpretation 13 

of marsh vegetation zones.      14 

Full-waveform lidar was collected for the entire geographic area covering the selected salt 15 

marshes.  However, to enable the processing and multiple model runs to execute in a reasonable 16 

amount of time, priority subregions (red boxes in Figure 3) were identified and used in the 17 

analysis. Therefore, the model training dataset included only field collected RTK GNSS data for 18 

“true” ground elevation in MHW data that were bound by the extracted subset of full-waveform 19 

data (n = 785 out of total collected n > 2800).  The data file also included the dominant 20 

vegetation species found at each location and was intersected with the multiple predictor grid 21 

layers calculated above.  Using the “extract multivalues to point” utility in ArcGIS10, all XY 22 

locations were attributed with the corresponding waveform or surface values found in Table 2.  23 
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Distance to shoreline was calculated in meters for each point using a “multiple minimum 1 

distance” script in ArcGIS and the positive direction was defined to be shoreward of this line.  2 

This same subset of ground control data was also used for the DRL model runs for consistency 3 

and comparability between the various models. 4 

 5 

2.5 Models and Model Construction 6 

The complex and often nonlinear relationships between predictors can be extracted using 7 

nonparametric, computer-based, predictive modeling with the 13 predictor variables available in 8 

this study (Table 2), without any prior assumptions as to the distribution of the variables.  All 9 

models used in this study were created using Salford Predictive Modeler version 7.0, a 10 

commercially available software by Salford Systems (www.salford-systems.com).  A battery of 11 

five nonparametric model runs  were conducted including Stochastic Gradient Boosting of Trees 12 

[TreeNet], Multivariate Adaptive Regression Splines [MARS], Generalized Path Seeker Model 13 

[GPSM], Random Forest [RF], Classification and Regression Trees [CART]) (Table 3). One 14 

parametric model was also used (Stepwise Least Squares Regression).   The support vector 15 

machine (SVM) algorithm was not selected as a testing model in favor of using Stochastic 16 

Gradient Boosting (TreeNet), which has been found to match or exceed SVM’s prediction 17 

performance (Zhang et al., 2017).  The 785 GCPs of available data from the three hydrologically 18 

separate study marshes were combined into one database and then partitioned into “learn” (n = 19 

560 [71%]) and “test” (n = 225 [29%]) datasets.  The modeling software randomly selects 20 

records from the provided dataset based on the user preference of the required test partition size.  21 

The commonly-referenced standard is an 80/20 split of test to learn records.  However, in this 22 

analysis a slightly more robust training sample size of nearly 30% (70/30) was established to 23 
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ensure model accuracy on the independent dataset.  The test data are held back from the model 1 

development process making them completely independent of the model learn data and are used 2 

solely for model validation. Up to 20 model runs with randomly selected learn and test sets were 3 

conducted in order to verify robustness of the results and to ensure that the model results were 4 

not dependent on a randomly selected best case scenario from the learn dataset.  Models were 5 

then evaluated for their performance using three criteria: 1) a high regression coefficient of 6 

determination (R2) with the independent test dataset; 2) similar regression coefficients between 7 

learn and test datasets; and 3) the closeness of fit of the final regression equation line to a perfect 8 

1:1.  Therefore, a perfect model would produce an R2 value equal to 1 and an equation of y = x.   9 

An algorithmic-level description of the different models is available in the references listed in the 10 

last column of Table 3.  In the implementation of each of the following models, the algorithm 11 

rules were selected to maximize the accuracy and then tested on the independent test dataset.   12 

The predictor parameter variables existed for every pixel (1 m2) of the marsh surface and the 13 

final developed models were then “scored” against the complete marsh-wide grid of 525,941 14 

pixels.  To accomplish this, the parameter (P) grids were exported to ASCII format from ArcGIS 15 

and a single spreadsheet (X, Y, Z, P1-Pn) was created.  The table was imported into the Salford 16 

Predictive Modeler software and using the best performing correction models, the entire table 17 

was scored for each geographic coordinate with all the required predictor variables.  Finally, the 18 

X, Y and model corrected Z values were exported and gridded in ArcGIS to create a new DEM. 19 

 20 

2.6 Vegetation Classification 21 

A similar method was also employed to create vegetation classification maps for the entire marsh 22 

based solely on the waveform shape-based metrics and not spectrum. Firstly a 2009 3-band 23 
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(RGB) MassGIS high resolution (0.3 m pixel) orthophoto captured one year prior to the lidar 1 

survey was used in conjunction with the field collected locations (n = 785) of ground conditions 2 

and species dominance to create a GIS map of marsh vegetation zones.  The marsh zonation field 3 

map consisted of three classes: bare ground (GR), high marsh vegetation [S. patens, Salicornia 4 

spp., D. spicata, short-form S. alterniflora] (HM), and low marsh vegetation [tall-form and 5 

medium-form S. alterniflora] (LM).  Next, the field data spreadsheet from the elevation 6 

correction model runs with X, Y, Z, P1-Pn and species dominance was updated to include the 7 

new parameter of marsh zone (GR, LM, HM).  The table was imported into the Salford 8 

Predictive Modeler software and classification models were created and confusion matrices were 9 

constructed for the best performing models.  Lastly, the previously discussed method for creating 10 

a grid of the entire marsh based on the model results was used to develop vegetation zonation 11 

classification maps.  These maps were then visually analyzed for consistency with the aerial/field 12 

interpretation maps. 13 

3. Results 14 

Predictive modeling runs were conducted with a variety of parameters from both full-15 

waveform and DRL sources in addition to DRL only analyses.  Since the set of predictors 16 

sufficient to provide discriminatory power and high predictive model accuracy for correcting 17 

vegetation induced uncertainty in salt marshes was unknown, a number of commonly used lidar 18 

derivative products were added to the full-waveform metrics for analysis.  These parameters 19 

were added and removed from successive modeling runs to test results.  In addition, multiple 20 

nonparametric algorithms were utilized to find the best performing model and ensure validity of 21 

all the model results to minimize the possibility of overfitting.  Final development of the best 22 

performing model was also conducted up to 20 times using randomly selected different learning 23 
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and test datasets from the available data to verify model consistency.  Field and lidar data from 1 

three different marshes were used to create the model, which also limits the possibility of the 2 

model becoming overly fit to a single location. 3 

 4 

3.1 Elevation Correction Models Using Full-waveform Metrics and DRL Predictors 5 

The results of five different regression-based nonparametric models and one parametric 6 

model are presented in Table 4.  The dataset used for these model runs included all available 7 

waveform metrics as well as those predictors derived from the DRL elevation data from the same 8 

flight (Table 2).  The resulting models produced “test” sample regression coefficients ranging 9 

from R2 = 0.919 to 0.963 with regression line slopes from 0.897 to 0.982 and y intercepts near 0.  10 

The top two most successful models were TreeNet and MARS with test sample R2 values of 0.96 11 

and slopes within 4% of 1:1.  Since the learn and test sample results were very close in R2 values, 12 

the model was scored (i.e. run) against all of the available data with ground truth RTK GNSS 13 

elevations (Learn + Test samples, n = 785) and plotted with the original uncorrected lidar data to 14 

visualize the improvement.  The TreeNet algorithm produced better results than MARS on the 15 

independent test sample with a tighter linear clustering for the scored dataset of all available data 16 

with an R2 of 0.982 compared to an uncorrected lidar R2 of 0.797 (Figure 5a).  The MARS 17 

model results appear to be a little more scattered than the TreeNet model with additional 18 

negative residuals (Figure 5b). 19 

Predictor variable importance is a significant tool in evaluating model results.  The Salford 20 

Systems modeling software assigns the most important variable a score of 100 and all other 21 

variables are rescaled relative to the most important variable.  This importance score measures 22 

the performance of the variable as a primary or surrogate splitter for each individual tree 23 
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evaluated and not its value in relation to other trees.  As more and more trees are used in the 1 

model construction, more predictor variables have an opportunity to influence decision trees.  2 

Since relative variable importance within decision trees in any given model and across models 3 

can greatly differ, variable importance can’t be an absolute value or percentage.     4 

An apparent trend exists in the variable importance among the various nonparametric models 5 

(Table 5).  The obvious and most influential variable when calculating corrected elevation is 6 

uncorrected lidar elevation.  The second most important variable in 4 of 5 nonparametric models 7 

was waveform width.  The CART model defined distance from shoreline as the second and 8 

waveform width as the third most important variables.  The predictive power of waveform width 9 

is consistent with previous findings by the authors in relation to observed lidar uncertainty and 10 

vegetation characteristics such as height (Parrish et al., 2014; Rogers et al., 2015, 2016).  11 

However, the third most important variable was not consistent across models.  In two of five 12 

cases (TreeNet and Random Forest) the third most important variable was distance from 13 

shoreline, but in the MARS and Generalized Path Seeker models, surface curvature and 14 

waveform amplitude, respectively, were the third most important variable. 15 

Error caused by the salt marsh vegetation on lidar returns was evident in the uncorrected 16 

dataset by comparing the vegetated field RTK GNSS measurements used in this study (n = 694, 17 

91 GCPs were bare ground) with lidar derived elevations from the NCALM dataset (Rogers et 18 

al., 2016).  Uncorrected lidar measurements exhibited a positive bias, μ, of 0.24 m over the “all 19 

vegetation” ground control data (Table 6) and a standard deviation, σ, of 0.23 m (0.33 m 20 

RMSE).  Separated by species type, most of the overall vegetation error can be attributed to just 21 

S. alterniflora with an observed bias of 0.35 m and standard deviation of 0.22 m (0.41 m RMSE).  22 
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The other species surveyed (S. patens, D. spicata, and Salicornia spp.), had a bias of between 1 

0.05 to 0.06 m with standard deviations ranging from 0.05 to 0.08 m (0.07 - 0.10 m RMSE).   2 

The output corrected elevations from the TreeNet and MARS models were both evaluated in 3 

a similar manner to the uncorrected lidar and the TreeNet model and exhibited an overall 4 

vegetation bias, μ, of 0.00 and standard deviation, σ, of 0.07 m (0.07 m RMSE) compared to the 5 

ground control data. Also, the biases of S. alterniflora and the other species were reduced 6 

substantially after correction with the TreeNet model (0.01 to 0.02 m; Table 6).  The MARS 7 

model correction produced similar results, but with a slightly larger standard deviation (µ = 0.00 8 

m; σ = 0.10 m), and less reduction in bias for the shorter species compared with the TreeNet 9 

model results (0.10 m RMSE).   10 

The reason it is possible for the correction technique discussed here to reduce both the mean 11 

and standard deviation (typically associated with systematic and random uncertainty 12 

components) is that the corrections are performed on a point-by-point basis.  This type of 13 

correction reduces systematic errors due to vegetation cover at each particular spot location, in 14 

contrast to methods that operate on the entire data set and can only account for a global bias, 15 

while the final model accuracy assessment is performed on the entire dataset.  The frequency 16 

distribution of uncorrected residuals demonstrated a range of lidar error unique to each species 17 

surveyed (Figure 6a).  Three of the four target species had similar residual distributions, but S. 18 

alterniflora was offset and had a long, asymmetric tail.  A histogram of the TreeNet corrected 19 

residuals illustrates a tight grouping around 0 m with only S. alterniflora exhibiting small 20 

shoulders on either side (Figure 6b). 21 

 22 

3.2 Elevation Correction Models Using Discrete-Return Lidar Predictors 23 
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Using the same algorithms as implemented with the full-waveform dataset, new model runs 1 

were conducted with only predictor variables derived from the DRL elevation data such as 2 

rugosity and slope (Table 2).  These models, without the use of the waveform feature-based 3 

metrics, produced test sample regression coefficients ranging from 0.828 to 0.911 and regression 4 

line slopes from 0.799 to 0.913 with intercepts slightly below 0 (Table 4).  TreeNet and Random 5 

Forest (RF) created the two most successful models with test sample R2 values of approximately 6 

0.91 and slopes within 9% and 14% of a 1:1 line, respectively compared to an uncorrected lidar 7 

R2 of 0.797.  The TreeNet algorithm (Figure 5c) had slightly more scatter on the scored dataset 8 

of all available data than the RF algorithm (Figure 5d).  However, the TreeNet model results had 9 

a significantly better slope line and y intercept than RF.  The RF results had residuals that 10 

suggested a more pronounced overestimation of bare ground (sandflats) and an underestimation 11 

of high marsh vegetation.  Both models with only DRL data contained significantly more scatter 12 

and underestimation than models developed using all of the waveform predictors.  Variable 13 

importance for the DRL-based models also showed uncorrected lidar elevation was most 14 

influential, with the second most important variable typically being rugosity (Table 7).  Model 15 

variation in variable importance was illustrated in the CART model, which considered distance 16 

from shoreline as the second most important variable and rugosity the third.   17 

The top two DRL-based models, TreeNet and Random Forest, were also evaluated on their 18 

ability to remove overall lidar bias as well as species bias (Table 6).  The TreeNet corrected data 19 

exhibited an overall vegetation bias, μ, of -0.01 m and standard deviation, σ, of 0.14 m (0.14 m 20 

RMSE), but species bias contributions varied widely (-0.05 to 0.10 m; Table 6).  The Random 21 

Forest model correction produced a similar results with µ  = -0.01 and σ = 0.11 m (0.11 m 22 

RMSE).  However, the shorter vegetation species had a tendency to be underestimated, 23 
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producing negative bias of between -0.07 and -0.08 m.  A TreeNet residuals histogram exhibits a 1 

symmetric grouping around 0 m with S. alterniflora with moderate shoulders on either side 2 

(Figure 6c). 3 

 4 

3.3 Vegetation Classification Models 5 

Dominant species or ground type had been collected as part of the field data for the 785 RTK 6 

GNSS locations across the three marshes that overlapped the extracted waveform data footprints.  7 

A model developed to separately classify the three major species and one genus (S. alterniflora, 8 

S. patens, D. spicata, and Salicornia spp.) did not produce useful results due to similarities in 9 

growth characteristics and waveform response that created considerable class confusion.  10 

Therefore a simplified approach was attempted, relying on zonation to classify vegetation.  The 11 

zonation model employed only three classes: bare ground (GR), high marsh vegetation [S. 12 

patens, Salicornia spp., D. spicata, short-form S. alterniflora] (HM), and low marsh vegetation 13 

[tall-form and medium-form S. alterniflora] (LM).  Three model algorithms were evaluated and 14 

their prediction success, the ability to discriminate between the three classes, is presented in a 15 

confusion matrix (Table 8).  The TreeNet model produced the highest success rate with an 16 

overall classification accuracy of 92% in the independent test dataset with the lowest success in 17 

the GR class.  Random Forest and CART models also performed well.  Variable importance of 18 

each of the three zonation models was evaluated (Table 9) and, as with the waveform based 19 

elevation correction models found in Table 4, the three most important predictors were 20 

waveform width, uncorrected lidar elevation, and distance from shoreline.   21 

The models were scored against the complete lidar dataset for Moors marsh (525,941 grid 22 

cells) with all 13 predictor variables to create classified grids of vegetation.  As a reference and 23 
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for comparison, a vegetation zonation map was created using traditional aerial photo 1 

interpretation and ground-truth data (Figure 7a).  The field map displays a system dominated by 2 

low marsh with a large central channel and several scattered high marsh regions, which are 3 

presumably topographic highs.  Comparisons between maps generated by the various 4 

classification models produced similar predictions, with some performing better in high marsh 5 

and others better at discriminating between low marsh and unvegetated tidal flats (Table 8).  The 6 

best performing model, TreeNet, produced the most accurate classification map (Figure 7b).  7 

Data gaps are typically water features such as salt ponds that are shown as white.  The resultant 8 

grid distinctly displays the two vegetative regions.  The model had some difficulty in interpreting 9 

bare ground just inside the shoreline contour and confused it with high marsh vegetation, 10 

possibly due to the dense macroalgae that was present.  There were also several high marsh areas 11 

identified by the model that were not interpreted as high marsh (SF S. alterniflora) from either 12 

the field or aerial survey.  A subsequent site visit to the marsh confirmed that these were indeed 13 

areas that should be classified as high marsh that were missed from the original aerial photo 14 

interpretation used to prepare the field zonation map. 15 

 16 

4. Discussion 17 

4.1 Nonparametric DEM Correction 18 

Although a few case studies have been conducted using predictive modeling in salt marshes 19 

to determine habitat, vegetative species, and edaphic conditions (Andrew and Ustin, 2009; 20 

Griffin et al., 2011; Hladik and Alber, 2014; Sanderson et al., 2001; Sellars and Jolls, 2007), to 21 

our knowledge there are no other salt marsh studies that use predictive modeling to develop a 22 

DEM correction technique nor any that employ full-waveform lidar metrics.  The predictive 23 
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modeling developed here provides a viable alternative to previous methods of DEM corrections.  1 

By applying nonparametric modeling on a location-specific, point-by-point basis, our methods 2 

reduced not only the global bias, but also the standard deviation of elevation residuals when an 3 

empirical accuracy assessment for the entire data set was performed. The models developed 4 

using both full-waveform and DRL surface predictors were successful at adapting to each pixel’s 5 

varying predictors, eliminating a majority of the vegetation-induced bias.  The models 6 

accomplished this without a priori knowledge of vegetation species location and using only a 7 

single remote sensing platform.  Although many of the algorithms evaluated in this study 8 

provided good results, the TreeNet algorithm consistently outperformed the others.  The final 9 

model achieved an exceptional R2 of 0.96 on the test dataset and 0.98 on the combined learn and 10 

test datasets, which dropped the overall bias from the uncorrected 0.24 to 0.00 m, the standard 11 

deviation, σ, from 0.23 to 0.07 m, and RMSE from 0.33 to 0.07 m.   This reduction was achieved 12 

for lidar data collected at peak vegetative conditions. 13 

The TreeNet algorithm, otherwise known as stochastic gradient boosting, was consistently 14 

the best performing algorithm used in this study.  It is capable of consistently generating 15 

extremely accurate models for both regression and classification.  To accomplish this, TreeNet 16 

generates thousands of small decision trees (< 6 terminal nodes), from a random sample of the 17 

data that sequentially eliminate residuals and converge on a highly accurate model (Derrig and 18 

Francis, 2008; Friedman, 2002).  TreeNet has the ability to handle contaminated or missing data 19 

that can be very challenging for other data mining methods, such as neural networks, by rejecting 20 

training data points that are too much at variance with the existing model.  The response variable 21 

mean square error or average negative log likelihood is successively lowered through applying 22 

numerous trees until an optimal model is achieved. 23 
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The strong results observed in this study might suggest that the model may be overfitting the 1 

data.  While this is a valid consideration, it should be noted that the model algorithms used in this 2 

study, in particular TreeNet, are designed to be highly resistant to overfitting.  TreeNet resists 3 

overfitting since very small trees are used instead of one large tree and therefor the models 4 

produce substantially higher accuracies (Friedman, 2002).  TreeNet uses several regularization 5 

techniques to minimize overfitting such as a gradual build up the model through successive 6 

gradient boosting iterations (trees).  Variables are introduced one at a time, but are only 7 

permitted to adjust the model outcome by very small coefficients (Friedman, 2002).  Increasing 8 

the number of trees reduces the error on the learn dataset and the software determines the optimal 9 

tree that minimizes overfitting and error.  In addition, another method of overfitting 10 

regularization employed by TreeNet consists of the subsample size, which is a constant fraction 11 

of the size of the training set.  A small subsample size introduces randomness into the algorithm 12 

by forcing the regression trees to be fit to reduced datasets at each boosting iteration (Friedman, 13 

2002).  Another method of ensuring validity of the models (i.e. absence of overfitting), would be 14 

comparison of the results of multiple nonparametric algorithms.  The results from the various 15 

algorithms used in this study based on very different mathematical formulas and concepts 16 

produced a cluster of similar results giving further indication that the data were not overfit.  Also, 17 

data from three regional marshes were used to create the model limiting the possibility that the 18 

model results are site specific.  Additionally, final model accuracy and overfitting was assessed 19 

by performing the model creation multiple times using randomly selected different learning and 20 

test datasets from the available data to verify model consistency. 21 

The set of predictors for correcting uncertainty in salt marshes chosen here appears to be 22 

sufficient to provide discriminatory power and high predictive model accuracy.  In some of the 23 
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models this list could be paired back and still achieve similar results.  In addition to uncorrected 1 

lidar elevation, waveform width appears to be the variable with the strongest predictive power, 2 

although several other predictors such as distance from shoreline, rugosity and waveform 3 

amplitude also played key roles in some models.  Previous research has suggested a relationship 4 

between waveform width, vegetation height and lidar uncertainty (Parrish et al., 2014; Rogers et 5 

al., 2015, 2016).  This relationship can be attributed to the convolution of the laser pulse with an 6 

extended target (i.e., taller vegetation results in greater spreading of the return pulse) (Rogers et 7 

al., 2015).  Distance from shoreline also played a key role in the developed models.  As distance 8 

increased from the shoreline (i.e., the lowest elevational extent of vegetation), vegetation height 9 

tended to decrease as well.  However, this relationship may not always be the case in all marsh 10 

environments.  Although variations in rugosity (surface roughness) were slight across much of 11 

the uncorrected DEM surface, there were perceptible differences between vegetation species, 12 

presumably representative of growth habits, which were used in the correction process.  For 13 

example, S. alterniflora stands appeared to have greater rugosity than high marsh species.  The 14 

predictive power of waveform amplitude was likely due to increased planimetric obscuration (i.e. 15 

vegetation coverage) with plant height, as well as the near infrared wavelength of the laser, 16 

which is preferentially reflected by healthy vegetation (Rogers et al., 2015).  Not surprisingly, 17 

waveform amplitude and waveform standard deviation (a collinear variable with waveform 18 

width used in this study) were found to account for nearly 75% of the variability in vegetation 19 

height (Rogers et al., 2015).  20 

The uncorrected lidar DEM for Moors Marsh displays highly variable elevations with 21 

undulating clusters of vegetation growth (Figure 8a).  However, the scored results from the 22 

TreeNet full-waveform model for the same geographic area produced a vastly improved DEM, 23 
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suggesting that the model performs extremely well at removing vegetation-induced uncertainty 1 

(Figure 8b).  All high elevation clustering visible in the uncorrected DEM was removed and the 2 

underlying smooth topographic surface was revealed.  Topographic highs hidden in the original 3 

DRL dataset are now plainly visible after model correction.  Species-based correction methods 4 

have been found to create step like patterns in marsh DEMs when transitioning from one species 5 

polygon to another and step removal required additional smoothing algorithms that would 6 

increase DEM inaccuracy (Hladik et al., 2013).  This was particularly true within the ecophenes 7 

of S. alterniflora  (Hladik et al., 2013).  A map depicting the difference between the uncorrected 8 

lidar and the full-waveform corrected DEMs confirms the extent of vegetation-based uncertainty 9 

reduction (Figure 8d).   Although the overall DEM bias is clearly improved with species-based 10 

correction methods (Hladik et al., 2013), nonparametric modeling with full-waveform predictors 11 

improves error removal, while compensating for changing vegetation conditions on a pixel by 12 

pixel basis, resulting in more accurate DEMs. 13 

The availability of lidar waveform data to the user community is still relatively limited.  14 

Therefore, since most researchers may not have access to or the ability to process raw waveform 15 

data at present, elevation correction of the raw salt marsh lidar DEM using only DRL data 16 

sources (i.e. no waveform model predictors) would be a valuable alternative to full-waveform 17 

based correction even if it were slightly less accurate.  However, there is one waveform-based 18 

parameter that is regularly supplied with DRL systems that is helpful and can improve DRL 19 

corrections.  In addition to recording return pulse time to correspond with elevation, most 20 

topographic lidar systems record the intensity, or the waveform amplitude (typically scaled to an 21 

arbitrary range of 0-255), of the return pulse.  Lidar intensity typically represents the peak 22 

amplitude of the return pulse, and is a function of the reflectivity of the surface at the laser 23 
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wavelength (as well as range, incidence angle, and other variables).  Since waveform amplitude 1 

was found to correlate well with some salt marsh biophysical parameters (Rogers et al., 2015) 2 

and was a moderate contributor in the full-waveform model, intensity was included in the DRL 3 

based models.  The lidar intensity value provided with the NCALM data delivery was 4 

uncalibrated, but since the data were collected for all three marshes with the same sensor and in 5 

one continuous flight, intensity values by ground feature type from site to site are not expected to 6 

vary significantly.   7 

As anticipated, the DRL-based model did not produce corrected DEMs of similar quality to 8 

models created using full-waveform feature based metrics.  Nevertheless, the use of the DRL 9 

data predictors and intensity did greatly improve the resulting DEM over the uncorrected lidar 10 

with an R2 = 0.93 with a slope within 9% of a 1:1 line and brought the RMSE down from 0.33 to 11 

0.14 m.  These results were comparable to several other advanced correction methods and as 12 

with the waveform-based methods, the DLR-based nonparametric approach does not require a 13 

priori species information or other remote sensing data inputs such as multi/ hyperspectral 14 

imagery (Buffington et al., 2016; Hladik et al., 2013; Medeiros et al., 2015).  The use of this type 15 

of model may be acceptable in circumstances where partial correction is better than correction 16 

accomplished by some other means or no correction at all.  This is particularly the case when 17 

data acquisition does not specify recording full-waveform returns or when processing historical 18 

DRL datasets.  Scored results for the full geographic area produced an improved DEM (Figure 19 

8c) over the uncorrected lidar dataset (Figure 8a).  Differences between the uncorrected and the 20 

DRL corrected DEMs suggest that the model performs reasonably well at removing vegetation-21 

induced uncertainty (Figure 8e).  However, a comparison of the waveform model difference 22 

map (Figure 8d) and the DRL model difference map (Figure 8e) reveals that the DRL model 23 
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under-corrected elevations in areas of tallest vegetation and over-corrected in areas with the 1 

shortest vegetation (Figure 8f).  This is particularly prevalent in areas that could be identified as 2 

SF S. alterniflora dominant.   3 

 4 

4.2 Vegetation Classification 5 

Salt marsh vegetation mapping is traditionally performed using field based data, aerial 6 

interpretation or classification from spectral signatures found in multi/hyperspectral imagery to 7 

show patterns in time and space as plants respond to changes in important drivers like hydrology, 8 

sea level, and sediment supply (Figure 7) (Kirwan et al., 2011; Konisky, 2012).  A logical 9 

extension of the uncertainty correction modeling was to test its ability to map vegetation based 10 

on the strong relationships between waveform-based metrics and vegetation biophysical 11 

parameters (Rogers et al., 2015).  This predictive modeling based classification method relied 12 

solely on lidar data based parameters and did not use the spectral properties typically used in 13 

vegetation classification.  However, due to the similarities in biophysical characteristics between 14 

some of the vegetation found at this and other northeastern salt marshes, producing an individual 15 

species based map from lidar metrics proved difficult, as other researchers have found when 16 

classifying vegetation based on spectral characteristics (Fernandez-Nunez et al., 2017; Hladik 17 

and Alber, 2014; Hladik et al., 2013; McClure et al., 2016; Medeiros et al., 2015).   18 

Salt marsh ecologists often refer to the vegetative zonation within the marsh system as high 19 

marsh (HM) and low marsh (LM) and these designations represent both the species present, as 20 

well as frequency of inundation, which are integrally related.  High marsh vegetation species in 21 

northeastern United States typically include S. patens, D. spicata, Salicornia spp. and often 22 

short-form S. alterniflora, while the low marsh is comprised primarily of medium and tall-form 23 
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S. alterniflora.  Using a combination of predictor variables including waveform width, rugosity, 1 

and distance from shoreline, several useful models were created that were based on our 785 2 

sample locations with the best model having an overall classification accuracy of 92%.  A three 3 

zone model (high marsh, low marsh, and bare ground) was produced using this model and 4 

interpolated for each pixel across the entire marsh.   5 

In some cases, the model appeared to have some difficulty in interpreting bare ground just 6 

inside the shoreline contour and confused it with high marsh vegetation.  It has been reported 7 

that classification of multi/hyperspectral imagery of S. alterniflora also has difficulty in this zone 8 

due to spectral confusion with mixed pixels that include mud: “the Spartina problem” (Hladik et 9 

al., 2013).  However, the cause in this case is likely in part be due to the presence of large mats 10 

of macroalgae on rocks (Ascophyllum nodosum var. scorpioides and Fucus vesiculosus var. 11 

spiralis).  Macroalgae was not evaluated in this study, but are commonly is found in the intertidal 12 

zone and might produce a similar biologic induced waveform response to that of high marsh 13 

vegetation based on some of its biophysical characteristics such as its short height.  Further 14 

testing is needed to corroborate this observation.  15 

The vegetation maps created in this study have been derived solely from lidar data and 16 

without the use of any spectra derived from aerial photography or multi/hyperspectral 17 

imagery.   There is little if any spectral difference between the three ecophenes of S. alterniflora 18 

(Artigas and Yang, 2005; Schmidt and Skidmore, 2003), and using traditional remote sensing 19 

classification methods often results in considerable confusion among the classes.  Overall 20 

classification accuracies from other studies using spectral signatures or hybrid approaches of 21 

lidar and hyperspectral imagery ranged from 59% to >90% (Hladik et al., 2013; Rosso et al., 22 

2006; Wang et al., 2007).  That the nonparametric modeling of the full-waveform metrics could 23 
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achieve similar or better classification results without the use of spectra is significant.  The 1 

classification based on lidar modeling appears a viable alternative to differentiate salt marsh 2 

vegetation into identifiable regions or classes.   3 

The results of this study are consistent with the CART nonparametric vegetation 4 

classification models conducted by Hladik and Alber (2014) that do not use full-waveform 5 

metrics as predictor variables.  Vegetation zonation mapping is commonly used by salt marsh 6 

scientists to investigate marsh habitat and monitor changes in the marsh over time due to tidal 7 

restrictions, restored flow after a restoration project, storm assessment, or the potential impacts 8 

or monitoring of SLR.  In future studies, salt marsh mapping using full-waveform lidar and 9 

nonparametric, predictive modeling could be automated and provide standardized results with 10 

minimal human input or interpretation, which may allow for rapid, unbiased assessments of 11 

vegetation zones.  Although more research is needed to assess its full capabilities, this new 12 

vegetation classification method may also prove to be more efficient and/or more accurate than 13 

some of the traditional methods currently being employed.  Another possible future research 14 

direction for research could be to add spectral values from the various bands of 15 

multi/hyperspectral imagery as predictor variables to the waveform model to produce potentially 16 

highly accurate vegetation classification maps. The combination of precise elevation (+/- 2 cm) 17 

and vegetation maps from full-waveform LIDAR [or: ‘remote sensing’] would allow ecologists 18 

and managers to track salt marsh responses to restoration and other management actions as well 19 

as observe and predict responses to rising sea levels, such as plant community migration and loss 20 

by drowning. 21 

 22 

5. Conclusions 23 
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The utility of salt marsh DEMs based on lidar is weakened by vegetation-induced 1 

uncertainty, which continues to challenge researchers and coastal managers who desire to use 2 

high resolution lidar datasets for regional or site-specific analysis.  Without a satisfactory 3 

correction method, lidar-based DEM models are often unsuitable for restoration planning, 4 

hydrologic modeling, storm impact analysis, SLR adaptability studies or other applications 5 

where fine topographic details are necessary.  The main conclusions drawn from this research 6 

are: 1) nonparametric predictive modeling techniques, coupled with full-waveform shape-based 7 

metrics, provide a powerful tool to reduce elevation uncertainty due to salt marsh vegetation, 8 

even during peak vegetation growth conditions.  The highest performing model produced an R2 9 

of 0.98, a slope within 4% of a 1:1 line, reduced bias, µ , from 0.24 m to 0.00 m, and standard 10 

deviation, σ, from 0.23 to 0.07 m (0.33 to 0.07 m RMSE); 2) in addition to DRL uncorrected 11 

lidar elevation, waveform width was determined to be the most significant predictor variable in 12 

nearly all models that used waveform feature-based metrics; 3) moderately successful models 13 

can be built from predictors based solely on DRL sources (with intensity), which may provide 14 

adequate correction when full-waveform lidar is not available.  The best models resulted in an R2 15 

of 0.92, slopes within 9% of 1:1, reduced bias to -0.01 m, and standard deviation to 0.14 m (0.14 16 

m RMSE); and 4) accurate salt marsh zone classification maps (overall classification accuracy 17 

>90%) can be created using only a lidar data source and without multi/hyperspectral imagery.   18 

The coupling of nonparametric modeling tools and GIS has become standard practice in 19 

many different environmental fields such as land use, geomorphology, soil science, and wildlife 20 

habitat (Bourennane et al., 2014; Gutierrez et al., 2009; Meissner et al., 2014; Tayyebi and 21 

Pijanowski, 2014; Timm and McGarigal, 2012).  Full-waveform lidar combined with predictive 22 

modeling tools appears to deliver highly accurate salt marsh elevation models and vegetation 23 
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maps by reducing vegetation-induced lidar uncertainty.  The developed model was able to reduce 1 

both systematic and random error as computed for the entire data set by applying location-2 

specific, point-by-point corrections obtained via the nonparametric regression methods.  The 3 

explanation for the ability to reduce both μ and σ is that some of what is computed as the 4 

“random error” of the full dataset is, in fact, due to vegetation-induced systematic error that 5 

exists at the individual point level, and these model corrections are applied on a point-by-point 6 

basis.  Corrected elevation surfaces will be tremendously useful to support coastal research and 7 

management objectives, while also minimizing the amount of expensive, time-consuming field 8 

work.  The ability to properly correct salt marsh DEMs should allow the creation of better 9 

inundation models such as SLAMM (Sea- Level Affecting Marshes Model) (Chu-Agor et al., 10 

2011) and the detailed assessment of the impacts of sea level rise on marsh health and resilience.  11 

Corrected DEMs should also help to plan and monitor the results of salt marsh restoration 12 

projects.  The five nonparametric models created in this study employed different algorithms to 13 

reduce elevation uncertainty, yet provided a relatively narrow range of results.  The use of 14 

multiple algorithms producing similar results provides further validation of a successful outcome 15 

despite the complex variable relationships and interactions.   16 

It is important to note that, since the data for this study were acquired in 2010, a number of 17 

important advancements have been made in airborne lidar technology. These include Geiger-18 

mode (Abdullah, 2016) and single-photon lidar (Stoker et al., 2016), short pulse width systems 19 

(Wright et al., 2016), and multi-wavelength lidar systems (Morsy et al., 2016). The Geiger-mode 20 

and single-photon technologies offer the potential for higher data densities and higher flight 21 

altitudes, but cannot provide waveforms (although some authors have developed techniques to 22 

aggregate returns to create something akin to a waveform). For the short-pulse width systems, it 23 
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is presently unclear to what extent the methods developed in this study will work (or whether 1 

they are even necessary, since the ability to resolve multiple returns—including the ground 2 

return —in dense marsh vegetation may improve). Multi-wavelength (e.g., 1550, 1064, and 532 3 

nm), waveform-resolving lidar systems appear well suited for extending the work presented here, 4 

but future research is needed to investigate this. Additional topics recommended for future work 5 

include: a) assessing whether models created in this study can be successfully scored against full-6 

waveform data from other northeastern salt marshes without substantially modifying the 7 

developed model; b) extending this type of analysis to marshes in different regions of the country 8 

with differing vegetation species; c) analyzing full-waveform data taken from marsh systems in 9 

winter (senescent conditions) to determine if this technique is adaptable to data collected at 10 

different times of the year and perhaps lowering RMSE further.   11 
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Figure Captions and Tables 1 

 2 
 3 

 4 
Figure 1 (a) Histogram of vegetation height for each of the surveyed species.  (b) Frequency 5 
of occurrence by elevation range (MHW) for each vegetation species (n = 2,899).  (SPAL - 6 
Spartina alterniflora, DISP - Distichlis spicata, SPPA - Spartina patens, SASP - Salicornia 7 
spp.) 8 
 9 

 10 

 11 

 12 
Figure 2: Scatterplot of vegetation height and terrain elevation (MHW) at each RTK GNSS 13 
location (n = 2,899).  Open circles are Spartina alterniflora and closed circles are all other 14 
species (Spartina patens, Distichilis spicata, and Salicornia spp.).   15 
 16 
 17 

 18 

 19 

 20 

Figure 3: Site locus map.  Insets are 1) Moors marsh, 2) Pamet marsh, and 3) Great Island – 21 
middle marsh.  RTK GNSS points are color coded by dominant vegetation species/ground 22 
type.  Red boxes are the extent of Full-waveform data used in the model creation analysis.  23 

 24 

 25 

Figure 4: Pamet Marsh – Vegetation showing (left to right) Spartina alterniflora, Salicornia 26 
spp., and Spartina patens zonation along a man-made dike. 27 

 28 

Table 1: Flight parameters of NCALM July 20th, 2010. 29 

Flight Parameter Value 

Flying Speed (m/sec) 60 

Altitude (m) 600 

Swath Overlap (%) 50 

Laser Beam Divergence (mrad) 0.25 

Pulse Rate Frequency (kHz) 70 

Transmit Pulse Width (ns) 12 

Scan Rate (kHz) 40 

Scan Angle (degrees) ± 21 

Point Return Density (pts/m2) 5 

Laser Footprint Diameter (m) 0.15 

 30 
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 1 

Table 2: Waveform metrics and surface characteristics available to the model predictor 2 
variables. 3 

 4 
Waveform and Surface Metrics 

Source Symbol Metric Name Description 

F
u

ll
-w

a
v
e
fo

rm
 

A Waveform amplitude 
Maximum of received echo (i.e., peak 

value) 

AUC Area under curve Trapezoidal numerical integration of echo 

µω Waveform mean 
A measure of the “center” of the return 

pulse 

g1 Waveform skewness 

A measure of the asymmetry of the return 

pulse; positive for our waveforms, which 

are right skewed 

w Waveform width Width (FWHM) of return pulse 

D
er

iv
ed

 f
ro

m
 D

is
cr

et
e 

L
id

a
r 

γ Curve 

The curvature of a surface is the fourth-

order polynomial calculated on a cell-by-

cell basis.  

γpl Curve Plan 
This is the curvature of the surface in the 

direction perpendicular to slope 

γpr Curve Profile 
This is the curvature of the surface in the 

direction of slope 

d Distance 

Distance (m) from the -1 mean high water 

(MHW) contour line (or lowest extent of 

vegetation).  Positive values for shoreward 

and negative values for seaward distances. 

Z Elevation 

Lidar elevation as derived from the 

discrete-return dataset using a 1 x 1 m cell 

size and inverse distance weighting 

interpolation method. 

ἰ Intensity 

Lidar intensity is the magnitude, of the 

return pulse.  It represents the reflectivity 

of the surface at the laser wavelength 

scaled between 0-255. 

Ɍ Rugosity 

Measure of terrain variation of grid cells 

within a neighborhood in three-

dimensions. Output raster values range 

from 0 (no terrain variation) to 1 (complete 

terrain variation). 

m Slope 

Slope is the maximum rate of change in 

value from each cell to its neighbors 

calculated as a percent. 

 5 

 6 

 7 

 8 

 9 

 10 
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 1 
 2 
Table 3: Regression and classification models used with their descriptions, benefits and 3 
detriments. 4 
 5 

Model Description Pros Cons References 

Classification and 

Regression Trees 

(CART) 

Creates classification trees 

using binary recursive 

partitioning to predict the 

group association based on 

one or more predictor 

variables. 

Ability to handle missing data;  

Can often reveal important 

data relationships that 

sometimes remain concealed 

using other analytical methods  

Regression based 

models are limited in 

the output response to 

data clustering based 

on the terminal node 

assignment 

(Breiman et al., 1984) 

Multivariate 

Adaptive 

Regression 

Splines (MARS) 

Approximates functions by 

capturing essential 

nonlinearities and 

interactions but still 

produces results in a form 

similar to a traditional 

regression 

Predicts continuous numeric 

outcome; Uncovers important 

data patterns; Produces output 

equations similar to those used 

in traditional regression 

approaches.   

Not capable of 

categorical 

classifications 

(Friedman, 1991) 

TreeNet - 

Stochastic 

Gradient Boosting 

Generates thousands of 

small decision trees, less 

than 6 terminal nodes, from 

a random sample of the data 

that sequentially eliminate 

residuals and converge on a 

highly accurate model 

Highly resistant to over fitting 

of the data since very small 

trees are used instead of one 

large tree and the models 

produce substantially higher 

accuracies 

Does not produce 

equation style 

regression output; 

lacks interpretable 

decision trees as are 

found with CART 

(Friedman, 2002) 

Random Forests 

Random Forests is an 

ensemble of many CART 

trees that are not influenced 

by each other 

Ability to spot 

outliers/anomalies; 

Discovering data patterns; 

Identifying important 

predictors; Predict future 

outcomes.   

Produces somewhat 

more accurate 

classification models 

than regression 

(Breiman, 2001) 

Generalized Path 

Seeker Model 

(GPSM) 

A forward stepping model 

that builds linear regressions 

that are additive with 

predictors and cannot 

discover on its own 

nonlinear relationships or 

interactions without the help 

of an analyst.   

Well suited to using more 

predictor columns than 

observation records; Can 

handle highly correlated 

predictors (colinearity);  Finds 

a compact model with good 

performance 

Does not handle 

missing values and 

will enforce row 

deletions to 

compensate for 

missing predictor 

values.  

(Friedman, 2012) 

 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
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 1 
 2 

Table 4: Model results from full-waveform and discrete-return lidar based models.  The 3 
“learn” sample was used to build the model while the “test” sample is independent and used 4 
for confirming model results.  The scored data column is the results of the model on the 5 
combined learn and test samples.  The regression line equation for the scored model is 6 
displayed to give an indication of how close to a 1:1 relationship the model created.  A 7 
perfect model would have an R2 value of 1 and an equation of y = x.  Models results are 8 
sorted in order by performance (best to worst), which is determined using three criteria: a 9 
high independent “test” sample R2 result, similarity of R2 results between the “learn” and 10 
“test” results, and closeness of fit of the final regression equation line to a 1:1 correlation.  * 11 
(The learn sample R2 for Random Forest [RF] models, otherwise known as “OOB” [out-of-12 
bag], is always 1 and therefore not reported.) 13 

 14 
 15 

Type Models Learn (n = 560) Test (n = 225) Scored (n = 785) Equation 

W
a

v
e

fo
rm

 

TreeNET 0.990 0.963 0.982 y = 0.9748x - 0.0103 

MARS 0.967 0.960 0.964 y = 0.9642x - 0.0169 

GPSM 0.934 0.948 0.938 y = 0.9329x - 0.0327 

Regression 0.934 0.947 0.938 y = 0.9326x - 0.0327 

RF * 0.959 0.984 y = 0.8971x - 0.0488 

CART 0.939 0.919 0.934 y = 0.9964x - 0.0009 

D
is

cr
e

te
 

TreeNET 0.934 0.910 0.926 y = 0.9126x - 0.0388 

RF * 0.911 0.959 y = 0.8652x - 0.0649 

MARS 0.857 0.872 0.862 y = 0.8567x - 0.0720 

CART 0.917 0.880 0.905 y = 0.9139x - 0.0407 

GPSM 0.817 0.832 0.827 y = 0.7992x - 0.0990 

Regression 0.820 0.828 0.823 y = 0.8201x - 0.0872 

 16 

Figure 5: a) Plot of RTK GNSS elevations to raw lidar elevation (closed circles) and the same 17 
lidar points corrected with the TreeNet model (open circles) using full-waveform and 18 
discrete-return lidar data.  b) Plot of RTK GNSS elevations to raw lidar elevation (closed 19 
circles) and the same lidar points corrected with the MARS model (open circles) using full-20 
waveform and discrete-return lidar data.  c) Plot of RTK GNSS elevations to raw lidar 21 
elevation (closed circles) and the same lidar points corrected with the TreeNET model (open 22 
circles) using only discrete-return lidar data sources.  d) Plot of RTK GNSS elevations to 23 
raw lidar elevation (closed circles) and the same lidar points corrected with the Random 24 
Forest model (open circles) using only discrete-return lidar data sources.  All elevations are 25 
in local mean high water (MHW) tidal datum.  26 
 27 

 28 
 29 

 30 

 31 

 32 

 33 
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 1 

Table 5: Variable importance is presented for each of the models that use full-waveform and 2 
discrete-return lidar data predictors.  The most important variable is given a score of 100 3 
and all other variables importance are rescaled relative to the most important variable.  The 4 
top 3 important variable from each model run are highlighted in bold.   5 

 6 

Symbol 
Predictor 

Variable 
TreeNet MARS GPSM RF CART 

A Amplitude 9.05 3.16 8.54 0.24 2.71 

AUC Area under curve 7.71 - 1.8 0.21 1.96 

µω Waveform mean 9.85 3.02 - 0.07 10.7 

g1 
Waveform 

skewness 
7.77 4.15 2.19 0.07 4.58 

w Width 52.11 42.62 39.16 24.11 30.26 

Z Elevation 100 100 100 100 100 

γ Curve 6.58 7 4.91 0.05 6.13 

γpl Curve Plan 7.55 - - 0.02 2.5 

γpr Curve Profile 7.32 - 6.21 0.08 3.28 

d Distance 16.77 2.86 1.27 3.22 65.95 

Ɍ Rugosity 8.49 5.21 - - 14.14 

m Slope 7.92 3.83 4.08 - 4.89 

 7 
 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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 23 

 24 

 25 
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Table 6: Residuals by species for uncorrected lidar and top two models for both full-1 
waveform and discrete-return lidar model results 2 

 3 

Model Species N Mean Min Max SD RMSE 

Uncorrected 

Lidar 

All Vegetation 694 0.24 -0.20 1.11 0.23 0.33 

S. alterniflora  446 0.35 -0.20 1.11 0.22 0.41 

S. patens 123 0.06 -0.17 0.18 0.05 0.08 

Distichlis spicata 39 0.05 -0.07 0.11 0.05 0.07 

Salicornia spp. 86 0.06 -0.12 0.32 0.08 0.10 

                

TreeNET 

Waveform 

All Vegetation 694 0.00 -0.43 0.29 0.07 0.07 

S. alterniflora  446 -0.01 -0.43 0.27 0.08 0.08 

S. patens 123 0.01 -0.08 0.16 0.04 0.04 

Distichlis spicata 39 0.02 -0.05 0.14 0.04 0.04 

Salicornia spp. 86 0.02 -0.10 0.29 0.06 0.06 

                

MARS 

Waveform 

All Vegetation 694 0.00 -0.42 0.49 0.10 0.10 

S. alterniflora  446 -0.02 -0.42 0.43 0.11 0.11 

S. patens 123 0.01 -0.10 0.26 0.07 0.07 

Distichlis spicata 39 0.03 -0.06 0.16 0.06 0.06 

Salicornia spp. 86 0.05 -0.11 0.49 0.09 0.10 

                

TreeNET 

Discrete 

All Vegetation 694 -0.01 -0.72 0.57 0.14 0.14 

S. alterniflora  446 -0.05 -0.72 0.37 0.14 0.15 

S. patens 123 0.04 -0.14 0.48 0.10 0.11 

Distichlis spicata 39 0.04 -0.11 0.57 0.11 0.12 

Salicornia spp. 86 0.10 -0.07 0.37 0.09 0.13 

                

Random 

Forest 

Discrete 

All Vegetation 694 -0.01 -0.60 0.56 0.11 0.11 

S. alterniflora  446 0.03 -0.22 0.56 0.11 0.11 

S. patens 123 -0.07 -0.47 0.04 0.08 0.11 

Distichlis spicata 39 -0.07 -0.60 0.04 0.10 0.12 

Salicornia spp. 86 -0.08 -0.33 0.08 0.07 0.11 

 4 

Figure 6: a) Frequency of occurrence for uncorrected lidar residuals (lidar – RTK GNSS = 5 
ΔZ) by vegetation species (n = 694) across all three marsh sites.  b) Frequency of occurrence 6 
for residuals as corrected by the TreeNet model using full-waveform and discrete-return 7 
lidar predictors (n = 694).  c) Frequency of occurrence for TreeNet model residuals for 8 
discrete-return lidar predictors (n = 694). The red lines in each graph represent the 9 
combined total of all S. alterniflora ecophenes residuals.   10 

 11 
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Table 7: Variable importance is presented for each of the models that use only the discrete-1 
return lidar data predictors.  The most important variable is given a score of 100 and all 2 
other variables importance are rescaled relative to the most important variable.  The top 3 3 
important variable from each model run are highlighted in bold.  “ - “ represents not found 4 
significant or used by the model.   5 

 6 

Symbol 
Predictor 

Variable 
TreeNet MARS GPSM 

Random 

Forest 
CART 

γ Curve 14.21 - 1.23 0.45 0.78 

γpl Curve Plan 12.29 - - - 3.18 

γpr Curve Profile 17.9 13.78 2.186 0.72 7.51 

d Distance 20.79 - 1.86 0.73 65.17 

Z Elevation 100 100 100 100 100 

ἰ Intensity 23.87 - - 2.44 14.68 

Ɍ Rugosity 24.72 14.92 55.33 2.2 21.96 

m Slope 14.68 - 6.28 0.2 14.74 

 7 

 8 
Table 8:  Confusion matrices for the three classification models created to identify vegetation 9 
zonation.  The three zones are bare ground (GR), high marsh vegetation [S. patens, 10 
Salicornia spp., D. spicata, and short-form S. alterniflora] (HM), and low marsh vegetation 11 
[tall-form and medium-form S. alterniflora] (LM).  The shaded diagonal (grey) contains the 12 
cases of agreement between the model and learn or test datasets.   13 

 14 

Model Class 
Test Dataset Learn Dataset 

N Correct GR HM LM N Correct GR HM LM 

T
re

eN
et

 GR 58 94.8% 55 2 1 33 81.8% 27 2 1 

HM 179 98.9% 0 177 2 69 92.8% 0 64 5 

LM 230 99.6% 0 1 229 89 95.5% 1 3 85 

Total 467 98.7% 55 180 232 191 92.1% 28 72 91 

R
a
n

d
o
m

 

F
o
re

st
 

GR 58 89.7% 52 5 1 33 97.0% 32 1 0 

HM 265 77.4% 9 205 51 110 83.6% 4 92 14 

LM 237 82.3% 15 27 195 82 86.6% 6 5 71 

Total 560 80.7% 76 237 247 225 86.7% 42 98 85 

C
A

R
T

 GR 58 91.4% 53 4 1 33 87.9% 29 4 0 

HM 265 83.4% 1 221 43 110 86.4% 0 95 15 

LM 237 81.9% 12 31 194 82 78.0% 5 13 64 

Total 560 83.6% 66 256 238 225 83.6% 34 112 79 

 15 

 16 
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P3-Waveform Lidar Correction_ECSS submittal_revision_v4_20171120_tables 

49 

 

Table 9: Variable importance is presented for each of the zonation models using all available 1 
predictors.  The most important variable is given a score of 100 and all other variables 2 
importance are reported  are rescaled relative to the most important variable.  The top three 3 
important variables from each model run are highlighted in bold.   4 

 5 

Symbol Predictor Variable TreeNet 
Random 

Forest 
CART 

A Waveform Amplitude 35.66 12.4885 7.4541 

AUC Area under curve 26.15 10.5998 10.2763 

mw Waveform mean 29.18 10.3625 19.2795 

g1 Waveform skewness 21.36 8.1181 15.1362 

w Waveform Width 100 100 92.5945 

Z Elevation 68.63 98.8685 100 

γ Curve 15.64 4.79 7.1263 

γpl Curve Plan 21.33 3.8031 0.9588 

γpr Curve Profile 24.25 7.3549 1.8469 

d Distance 60.37 68.5338 77.8668 

ἰ Intensity 51.62 25.7267 38.6824 

Ɍ Rugosity 32.92 22.667 41.7609 

m Slope 29.32 9.5455 8.0322 

 6 

  7 

Figure 7: a) Map of Moors marsh vegetative zones developed from field collected data and 8 
interpretation from a 2009 high resolution aerial photograph.  Salt ponds are not identified 9 
on this map.  b) Map of marsh vegetative zones derived from the TreeNet model using all 10 
available predictors.  Salt ponds and other water features are visible as data voids (white).  11 
Red ovals represent areas of high marsh vegetation (SF Spartina alterniflora) not interpreted 12 
using standard techniques, but detected by the full-waveform nonparametric model.  Yellow 13 
circles are “bare ground” that have been misclassified as high marsh possibly due to the 14 
presence of macroalgae.  15 

 16 
Figure 8: a) Uncorrected lidar DEM of last (single) returns using an Inverse Distance 17 
Weighting algorithm with a radius of 1 cell.    b) Full-waveform corrected DEM using the 18 
developed TreeNet model.  Notice the visible topography that was hidden in the uncorrected 19 
DEM by vegetation-induced bias.  c) Corrected DEM using discrete-return lidar derived 20 
predictor TreeNet model.  Results are an improvement over the uncorrected DEM, but still 21 
contain significant vegetation-induced bias as compared to the full-waveform corrected 22 
DEM.  d) Difference map between the uncorrected lidar DEM and the Waveform TreeNet 23 
model corrected DEM.  e) Difference map between the uncorrected lidar DEM and the 24 
discrete-return lidar corrected DEM using the developed TreeNet model.  f) Difference map 25 
between the full-waveform corrected difference map and the discrete-return lidar corrected 26 
difference map.  These differences (m) are the “improvement” of the full-waveform model 27 
over the discrete-return lidar model at removing the vegetative induced bias.  Elevations in 28 
panels a, b, and c are in meters and referenced to local MHW datum.  Differences in panels 29 
d, e, f are attributed to model “removed” vegetation-induced bias and are measured in 30 
meters.   31 

 32 
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